Large Research Facilities

bi2007m09 sls 0002 di v tn.jpg
Sometimes, one needs unusually large pieces of equipment to look at the smallest of objects – because only these large machines or facilities can generate the probes that are needed to examine matter in such a way that the information being sought can be obtained. PSI maintains a number of such facilities, making them available as a service for other institutions, but also using them for its own research. These facilities are unique within Switzerland, and PSI is the only location in the world for some of the facilities

Read more at: Large Research Facilities

Further information

21 June 2017

teaser picture

Injector 2: a pre-accelerator for protons

Large Research Facilities

As fundamental building blocks of matter, protons are part of all the things that surround us. At the Paul Scherrer Institute PSI, though, they step out of their usual role and are deployed to generate other particles, namely neutrons and muons, which are then used to study materials. But for that, the protons first have to be accelerated. An important role in this is played by a three-stage accelerator facility, in the middle of which stands the accelerator known as Injector 2.

29 May 2017

teaser picture

To the limits of the feasible

Large Research Facilities SwissFEL SwissFEL Technology

The company Daetwyler made the undulators for the free-electron X-ray laser SwissFEL of the Paul Scherrer Institute PSI, to a precision of one-tenth of the width of a hair.

18 April 2017

teaser picture

Successful for 20 years: Probing materials with particles

Media Releases Matter and Material Research Using Neutrons Large Research Facilities

Whether they study materials for the electronics of the future, batteries, or swords from the Bronze Age — for 20 years researchers from a range of disciplines have been using the Swiss Spallation Neutron Source SINQ of the Paul Scherrer Institute PSI for their investigations. At a symposium on 18 April, researchers looked back on the facility's successes and presented plans for modernisation.

5 October 2016

teaser picture

Physicists at the PSI’s large-scale research facilities are thinking beyond the Nobel Prize theories

Miscellaneous Large Research Facilities Materials Research Matter and Material

This year’s Nobel Prize for Physics goes to David Thouless, Duncan Haldane, and Michael Kosterlitz. The Academy also cited, in its background report, experiments carried out by Michel Kenzelmann, who today is a laboratory head at the PSI. He and other researchers at the PSI continue to do experiments based on the theories now honoured by the Nobel Prize.

30 May 2016

teaser picture

Zebra - a new instrument for the PSI

Research Using Neutrons Large Research Facilities Matter and Material

Interview with Oksana Zaharko
New scientific questions demand ever better experimental equipment. In this interview, PSI researcher Oksana Zaharko reports on the challenges of setting up a new instrument for research with neutrons.

9. March 2016

teaser picture

Five hundred thousand times less likely than winning the lottery

Media Releases Large Research Facilities Research Using Muons Particle Physics

Measuring the rarity of a particle decay
In the so-called MEG experiment at the PSI, researchers are searching for an extremely rare decay signature from a certain kind of elementary particles known as muons. More precisely, they are quantifying its improbability. According to their latest number, this decay occurs less than once in 2.4 trillion events. By means of this result, theoretical physicists can sort out which of their approaches to describing the universe will hold up against reality.

29. October 2015

teaser picture

X-ray research in the UFO

Matter and Material Research Using Synchrotron Light Large Research Facilities

At first glance, the Swiss Light Source SLS stands out as a striking building. The inside reveals a setting of cutting-edge research. A journey through a world where electrons race a slalom course and X-rays help decode proteins.

30. September 2015

teaser picture

Perfect beamlines go unnoticed

SwissFEL SwissFEL Technology SwissFEL Background Large Research Facilities SwissFEL Construction

Interview with Luc Patthey
Luc Patthey is in charge of designing and implementing the beamlines for the X-ray free-electron laser SwissFEL. In this Interview, he explains the requirements the beamlines need to meet for the X-ray light pulses generated by SwissFEL to reach the experiments in an optimal form and what role collaborations play in the development of beamlines.

21. May 2015

teaserbild.jpg

From inside an eggshell

Research Using Synchrotron Light Large Research Facilities

Tiny cavities inside eggshells supply the materials that stimulate and control the shell’s growth. Using a novel imaging technique, researchers from the Paul Scherrer Institute (PSI), ETH Zurich and the Dutch FOM Institute AMOLF have succeeded in depicting these voids in 3D for the first time. In doing so, they lift an old limitation of tomographic images and hope that one day medicine will also benefit from their method.

13. May 2015

teaserbild.jpg

Research geared towards the future

Research Using Synchrotron Light Large Research Facilities Materials Research Micro- and Nanotechnology SwissFEL

Interview with Gabriel Aeppli
Gabriel Aeppli has been head of synchrotron radiation and nanotechnology research at PSI since 2014. Previously, the Swiss-born scientist set up a leading research centre for nanotechnology in London. In this interview, Aeppli explains how the research approaches of the future can be implemented at PSI's large research facilities and talks about his view of Switzerland.

17. February 2015

teaserbild.jpg

Prepared for the SwissFEL

SwissFEL SwissFEL Experiments Large Research Facilities

For many years, PSI researchers have been testing experimental methods that will provide insights into novel materials for electronic devices. Using a special trick to make the Swiss Light Source (SLS) at PSI generate light with similar properties to that of PSI’s x-ray laser SwissFEL, the researchers were able to demonstrate that the experiments planned for SwissFEL are possible and they are now building an experimental station at SwissFEL.

9. October 2014

teaserbild.jpg

Foundation Stone Ceremony Marks Scientific Importance of ESS

Large Research Facilities Research Using Neutrons

Today, several hundred members of the European scientific community gathered at the European Spallation Source (ESS) construction site in Lund, Sweden, for the ESS Foundation Stone Ceremony. The event was held to ‘lay the foundation’ both for the new facility, which has recently begun construction, and for a new generation of science in Europe.

25. September 2014

teaserbild.jpg

Giants who control miniscule particles

Large Research Facilities

Magnets are the unsung heroes in particle accelerators because they keep protons or electrons on track. But such magnets have very little in common with the small ones on the domestic fridge door. Quite a few of the magnets at PSI are heavier and bulkier than the fridge itself, yet despite this they are also masterpieces of precision and control.

23. September 2014

teaserbild.jpg

A reliable type from the 1980s

Large Research Facilities

The source of the proton beam at PSI is a retro-style Cockcroft-Walton linear accelerator. Since 1984 it has been the first acceleration stage for protons which are taken up to around 80 percent of the speed of light by two further ring accelerators. This has resulted in the generation of a significant proton beam over decades, and which has even held the world record as the highest performing beam since 1994 thanks to ongoing retrofitting.

4. September 2014

teaserbild.jpg

New material generated with light

Media Releases Research Using Synchrotron Light Large Research Facilities Materials Research Matter and Material SwissFEL SwissFEL Experiments

PSI researchers garner experience for SwissFEL experiments
Aided by short laser flashes, researchers at the Paul Scherrer Institute have managed to temporarily change a material’s properties to such a degree that they have – to a certain extent –created a new material. This was done using the x-ray laser LCLS in California. Once the PSI x-ray laser SwissFEL is up and running, experiments of this kind will also be possible at PSI.

26. May 2014

teaserbild.jpg

New insight into photosynthesis

Media Releases Biology Research Using Neutrons Large Research Facilities

The way that algae and plants respond to light has been reinterpreted based on results from recent experiments. Under particular lighting conditions during photosynthesis, the well-ordered stacking and alignment of light-sensitive membranes in the algae are disrupted. There is no significant movement of the membrane embedded light harvesting proteins, which rather become largely inactive. These new findings challenge widely accepted views of how algae respond to light where the light harvesting proteins were thought to move around the membranes.

6. April 2014

teaserbild.jpg

Quantum melting

Media Releases Research Using Neutrons Large Research Facilities

Changes to the aggregate state triggered by quantum effects – in physically correct terms, quantum phase transitions – play a role in many astonishing phenomena in solids, such as high-temperature superconductivity. Researchers from Switzerland, Great Britain, France and China have now specifically altered the magnetic structure of the material TlCuCl3 by exposing it to external pressure and varying this pressure. With the aid of neutrons, they were able to observe what happens during a quantum phase transition, where the magnetic structure melts quantum-physically.

24. February 2014

teaserbild.jpg

The proton accelerator at the Paul Scherrer Institute: forty years of top-flight research

Media Releases Large Research Facilities Research Using Muons Research Using Neutrons Particle Physics Matter and Material

Materials research, particle physics, molecular biology, archaeology – for the last forty years, the Paul Scherrer Institute’s large-scale proton accelerator has made top-flight research possible in a number of different fields.

11. July 2013

teaserbild.jpg

Knowledge for tomorrow from "hot cells"

Energy and Environment Research Using Neutrons Nuclear Power Plant Safety Large Research Facilities

The manipulation and examination of irradiated and therefore radioactive objects, be they from nuclear power stations or research facilities, requires strict safety measures. Tests may only be conducted in so-called “hot cells”, where the radioactivity is hermetically enclosed and shielded behind concrete and lead walls up to 1 metre thick. In the hot cells of the PSI hot lab, the burnt-off fuel rods from the Swiss nuclear power stations are studied from a materials science perspective. The insights gained help nuclear power station operators to optimise the efficiency and safety of their plants. Besides this service, the hot lab is involved in several international research projects.

17. May 2013

teaserbild.jpg

Experiments in millionths of a second

Matter and Material Large Research Facilities Research Using Muons

Muons – unstable elementary particles – provide scientists with important insights into the structure of matter. They provide information about processes in modern materials, about the properties of elementary particles and the nature of our physical world. Many muon experiments are only possible at the Paul Scherrer Institute because of the unique intense muon beams available here.

7. May 2013

teaserbild.jpg

The idea-collector

SwissFEL SwissFEL Experiments Large Research Facilities

The X-ray laser SwissFEL will provide researchers with novel experimental opportunities for gaining insights into a large variety of materials and processes. But, how do we identify which scientists will benefit most from the facility and in what way the facility should be configured to best meet their needs? Bruce Patterson, the SwissFEL’s idea-collector, explains how this search is done.

25. January 2013

teaserbild.jpg

Proton size puzzle reinforced!

Media Releases Particle Physics Research Using Muons Large Research Facilities Matter and Material

An international team of scientists confirmed the surprisingly small value of the proton radius with laser spectroscopy of exotic hydrogen. The experiments were carried out at PSI which is the only research institute in the world providing the necessary amount of muons for the production of the exotic hydrogen atoms made up of a muon and a proton.

1. December 2009

Luetkens 0005 tn.jpg

The SμS muon source

Research Using Muons Matter and Material Large Research Facilities

Along its path, the beam first strikes one target, then the second, and then moves on to the lead target of the SINQ neutron source. Muons are generated by the collisions of protons with the carbon nuclei in the first two targets. PSI operates two muon targets because a single one could not supply enough muons for all the experiments being performed. The muons are guided with the aid of magnets to the individual measuring stations, of which there are currently six for experiments in solid-state physics using muons.

1. December 2009

bi2009m06 SLS luftbild 04 tn.jpg

The Swiss Light Source SLS

Matter and Material Research Using Synchrotron Light Large Research Facilities

The synchrotron light in the SLS is emitted from electrons, which move at a velocity of almost the speed of light along a circular path with an overall circumference of 288 metres. The synchrotron light is emitted tangentially to the trajectory of the electrons, i.e. in the same direction as sparks would fly from a grindstone, or a hammer from the hands of a hammer thrower.

The production of synchrotron radiation makes use of the fact that electrically charged particles emit light as they move along a curved path. Bending magnets keep the electrons on their curved track, as a magnetic field deflects fast-moving electrically-charged particles.

1. December 2009

psi 16022010 5302 tn.jpg

The SINQ neutron source

Matter and Material Research Using Neutrons Large Research Facilities

In the SINQ spallation source a beam of fast protons (at about 80 % of the speed of light) from the PSI proton accelerator facility strikes a block of lead (the Target). If a fast proton collides with a lead nucleus, the nucleus will be heated up and eject 10 to 20 neutrons. The neutrons set free by this method are extremely fast – much too fast for the experiments. In order to decelerate the neutrons after they have been generated, the whole target is placed in a tank filled with heavy water

1. December 2009

bi2005m03 0014 0001 di v tn.jpg

The PSI proton accelerator

Matter and Material Research Using Synchrotron Light Research Using Neutrons Research Using Muons Large Research Facilities Particle Physics

The neutrons and muons used for experiments at PSI are all produced by a beam of fast protons colliding with a target – made of lead in the case of the SINQ neutron source and of carbon in the case of the SμS muon source. For that purpose, the protons are accelerated to 80% of the speed of light at PSI's accelerator facility. The facility has been in operation since 1974. After numerous improvements, it provides the most intense proton beam in the world.

1. December 2009

psi 17032009 fff 0037 tn.jpg

Service to the scientific community

Matter and Material Research Using Synchrotron Light Research Using Muons Research Using Neutrons Large Research Facilities Particle Physics

Neutrons, synchrotron light and muons are very useful for researchers in a variety of disciplines. Using these probes, we can determine the structure of crystals, they help us understand magnetic processes, or they can reveal the structures of biological materials. However, producing these probes is so difficult that most research groups will not have a neutron, muon or synchrotron light at their own scientific centre.

12. November 2009

MM2009112 Experiment Strahllinie.jpg

Aufbau von Materialien nanogenau untersuchen

Media Releases Research Using Synchrotron Light Large Research Facilities Matter and Material Materials Research

Ein neues Mikroskop an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts wird es möglich machen, den Aufbau von Materialien mit bisher unerreichter Auflösung darzustellen. Dazu werden Forschende einzelne Bereiche in einem Material betrachten, die nur wenige Nanometer (millionstel Millimeter) gross sind, und für jeden dieser Bereiche bestimmen, welche chemischen Elemente darin enthalten sind.
This news release is only available in German.

25. September 2007

bi2004m04 0014 0034 di v tn.jpg

Year round proton radiation therapy at PSI using a new, dedicated cyclotron

Media Releases Large Research Facilities Medical Science Human Health

A pioneer in proton therapy for the treatment of cancer, PSI has recently introduced one of the most advanced technologies in the field. A new proton accelerator, a superconducting cyclotron, has been put into operation for patient treatment. The accelerator is used in conjunction with a gantry, a device which delivers the protons to the patient from any angle. The desired dose distribution is achieved by scanning a small pencil beam of protons throughout the tumor. The performance of the new accelerator has been excellent since the start of medical operation.